Functional Characterization of PhapLEAFY, a FLORICAULA/LEAFY Ortholog in Phalaenopsis aphrodite.

نویسنده

  • Seonghoe Jang
چکیده

The plant-specific transcription factor LEAFY (LFY) is considered to be a master regulator of flower development in the model plant, Arabidopsis. This protein plays a dual role in plant growth, integrating signals from the floral inductive pathways and acting as a floral meristem identity gene by activating genes for floral organ development. Although LFY occupies an important position in flower development, the functional divergence of LFY homologs has been demonstrated in several plants including monocots and gymnosperms. In particular, the functional roles of LFY genes from orchid species such as Phalaenopsis that contain unique floral morphologies with distinct expression patterns of floral organ identity genes remain elusive. Here, PhapLFY, an ortholog of Arabidopsis LFY from Phalaenopsis aphrodite subsp. formosana, a Taiwanese native monopodial orchid, was isolated and characterized through analyses of expression and protein activity. PhapLFY transcripts accumulated in the floral primordia of developing inflorescences, and the PhapLFY protein had transcriptional autoactivation activity forming as a homodimer. Furthermore, PhapLFY rescues the aberrant floral phenotypes of Arabidopsis lfy mutants. Overexpression of PhapLFY alone or together with PhapFT1, a P. aphrodite subsp. formosana homolog of Arabidopsis FLOWERING LOCUS T (FT) in rice, caused precocious heading. Consistently, a higher Chl content in the sepals and morphological changes in epidermal cells were observed in the floral organs of PhapLFY knock-down orchids generated by virus-induced gene silencing. Taken together, these results suggest that PhapLFY is functionally distinct from RICE FLORICAULA/LEAFY (RFL) but similar to Arabidopsis LFY based on phenotypes of our transgenic Arabidopsis and rice plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems.

The LEAFY/FLORICAULA genes from Arabidopsis and Antirrhinum are necessary for normal flower development and play a key role in diverse angiosperm species. A homologue of these flower meristem-identity genes, NEEDLY (NLY), has been identified in Pinus radiata. Although the NLY protein shares extensive sequence similarity with its angiosperm counterparts, it is lacking the proline-rich and acidic...

متن کامل

Functional Characterization of Phalaenopsis aphrodite Flowering Genes PaFT1 and PaFD

We show that the key flowering regulators encoded by Phalaenopsis aphrodite FLOWERING LOCUS T1 (PaFT1) and PaFD share high sequence homologies to these from long-day flowering Arabidopsis and short-day flowering rice. Interestingly, PaFT1 is specifically up-regulated during flowering inductive cooling treatment but is not subjected to control by photoperiod in P. aphrodite. Phloem or shoot apex...

متن کامل

WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem.

FLORICAULA (FLO) of Antirrhinum and LEAFY (LFY) of Arabidopsis encode plant-specific transcription factors, which are necessary and sufficient to specify floral meristem identity. We isolated WFL, a wheat FLO/LFY ortholog, and analyzed its expression pattern. RT-PCR analysis indicated that WFL is expressed predominantly in young spike. The WFL expression pattern during reproductive development ...

متن کامل

VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate.

The flowering process in grapevine (Vitis vinifera) takes place in buds and extends for two consecutive growing seasons. To understand the genetic and molecular mechanisms underlying this process, we have characterized grapevine bud development, cloned the grapevine FLORICAULA/LEAFY (FLO/LFY) ortholog, VFL, and analyzed its expression patterns during vegetative and reproductive development. Flo...

متن کامل

Molecular evolution of FLORICAULA/LEAFY orthologs in the Andropogoneae (Poaceae).

Members of the grass family (Poaceae) exhibit a broad range of inflorescence structures and other morphologies, making the grasses an interesting model system for studying the evolution of development. Here we present an analysis of the molecular evolution of FLORICAULA/LEAFY-like genes, which are important developmental regulatory loci known to affect inflorescence development in a wide range ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 56 11  شماره 

صفحات  -

تاریخ انتشار 2015